DIANA

DIANA

lunes, 14 de abril de 2008

ADICION Y SUSTRACCION EN BASE FACTORIAL

En este artículo calcularemos dos o mas números en el sistema factorial para obtener otro, por lo tanto vamos a trabajar dos de las operaciones más sencillas que podemos realizar en éste sistema, la adición y la sustracción, donde enunciaremos una serie de reglas que nos permitirán obtener un correcto resultado.

OPERACIONES

ADICIÓN

En este procedimiento, al resultado obtenido lo llamaremos suma y a los números que se adicionan sumandos.

Reglas para sumar dos números en base factorial

  1. Se coloca un sumando debajo del otro, haciendo coincidir verticalmente las cifras del mismo orden.

  1. Se procede a sumar (como en nuestro sistema decimal) las unidades del sumando de arriba con las del orden correspondiente del sumando de abajo y el resultado se anota debajo de éstos dos, separado por un segmento horizontal, teniendo en cuenta el orden.

  1. Si la suma es un número que no está escrito correctamente en base factorial, se debe proceder a reescribirlo cumpliendo con las reglas de escritura expuestas anteriormente.

Ejemplos:

a) Sumar 4021(!) con 101(!)

Aplicando la regla número 1 para sumar dos números en base factorial:

4 0 2 1(!)

1 0 1(!)

Aplicando la regla número 2, obtenemos:

4 0 2 1(!)

1 0 1(!)

4 1 2 2

Nótese que el resultado obtenido no es un número escrito correctamente en base factorial, por ello nos abstuvimos de colocar el símbolo que indica en qué base se encuentra. Para solucionar éste inconveniente procedemos a aplicar la última regla.

Aplicando la regla número 3, tenemos:

4 1 2 2 = 4*4! + 1*3! + 2*2! + 2*1!

= 4*4! + 1*3! + 2*2! + 2!

= 4*4! + 1*3! + 3*2!

= 4*4! + 1*3! + 3!

= 4*4! + 2*3!

= 4*4! + 2*3! + 0*2! + 0*1!

= 4 2 0 0 (!)

Luego 4021(!) sumado con 101(!) da como resultado 4200(!).

b) Sumar 221(!) con 100(!)

Aplicando la regla número 1 para sumar dos números en base factorial:

2 2 1(!)

1 0 0(!)

Aplicando la regla número 2, obtenemos:

2 2 1(!)

1 0 0(!)

3 2 1(!)

Nótese que el resultado obtenido es un número escrito correctamente en base factorial, por lo que en éste caso se omite la regla número 3.

SUSTRACCIÓN

En este procedimiento lo notaremos con el signo -, además tendremos un número que llamaremos minuendo y le vamos a sustraer otro que llamaremos sustraendo. Al resultado lo llamaremos resta.

Reglas para sustraer un número de otro en base factorial

  1. El minuendo debe ser mayor o igual que el sustraendo para poder realizar la sustracción.

  1. Se coloca el sustraendo debajo del minuendo, haciendo coincidir verticalmente las cifras del mismo orden.

  1. Se procede a sustraer las unidades del minuendo con las del orden correspondiente del sustraendo y el resultado se anota debajo de éstos dos, separado por un segmento horizontal, teniendo en cuenta el orden.

  1. Si hay unidades de cualquier orden del minuendo mayores que las unidades correspondientes del sustraendo, el orden inmediatamente superior, le presta una de sus unidades para poder realizar la sustracción.

Ejemplos:

a) Sustraer 101(!) de 4021(!)

Aplicando la regla número 1 de la sustracción:

4 0 2 1(!) > 1 0 1(!)

Aplicando la regla número 2, obtenemos:

4 0 2 1(!)

- 1 0 1(!)

Aplicando las reglas número 3 y número 4, obtenemos:

4 0 2 1(!)

- 1 0 1(!)

3 3 2 0(!)

Analicemos más detalladamente el procedimiento que acabamos de realizar:

4 0 2 1(!) = 4*4! + 0*3! + 2*2! + 1*1!

-1 0 1(!) = 1*3! + 0*2! + 1*1!

Como a 0*3! no se le puede sustraer 1*3!, el orden inmediatamente superior le presta una de sus unidades para poder realizar la resta. Y tenemos:

4 0 2 1(!) = 3*4! + 4*3 + 2*2! + 1*1! =

-1 0 1(!) = 1*3! + 0*2! + 1*1!

3 3 2 0(!) = 3*4! + 3*3! + 2*2! + 0*1!

Luego el resultado de sustraer 101(!) de 4021(!) es 3320(!).

b) Sustraer 100(!) de 321(!)

Aplicando la regla número 1 de la sustracción:

321(!) > 100(!)

Aplicando la regla número 2, obtenemos:

321(!)

-100(!)

Aplicando la regla número 3, obtenemos:

321(!)

-100(!)

221(!)

Nótese que en éste ejemplo todas las unidades del minuendo son mayores que las unidades

correspondientes del sustraendo , por lo que en este caso se omite la regla número 4.

No hay comentarios: